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1. INTRODUCTION

For basic graph theoretic terminologies, we refer [4, 5]. By a graph G = (V,E), we mean
a finite undirected connected simple graph. A clique C of a graph G is a maximal complete
subgraph, denoted by its vertices. A chord of a path P is an edge joining two non-adjacent
vertices of P . In 1964, Hakimi [6] studied the facility location problems as vertex-to-vertex
distance in graphs. For any two vertices u and v in a connected graph G, the distance d(u, v) is
the length of a shortest u−v path in G. Also they defined the eccentricity e(v) of a vertex v, the
radius r, the diameter d, the center C(G), and the periphery P (G) of a graph G. The distance
matrix d(G) = [dij ] of G is a n × n matrix, where n is the order of G, and [dij ] = d(vi, vj),
the distance between vi and vj in G(1 ≤ i ≤ n, 1 ≤ j ≤ n).
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In 2005, Chartrand, Escuadro, and Zhang [2] introduced and studied the concepts of detour
distance in graphs. For any two vertices u and v in a connected graph G, the detour distance
D(u, v) is the length of a longest u − v path in G. Also they defined the detour eccentricity
eD(v) of a vertex v, the detour radius R, the detour diameter D, the detour center CD(G), and
the detour periphery PD(G) of a graph G. The detour distance matrix D(G) = [Dij ] of G is a
n× n matrix, where n is the order of G, and [Dij ] = D(vi, vj), the detour distance between vi
and vj in G(1 ≤ i ≤ n, 1 ≤ j ≤ n).

Chartrand, Johns and Tian [3]introduced and studied the concepts of an another detour dis-
tance in graphs as follows. For any two vertices u and v in a connected graph G, the detour
distance d∗(u, v) is the length of a longest induced u−v path in G. That is, a longest u−v path
P for which ⟨V (P )⟩ = P . An induced u − v path of length d∗(u, v) is called a detour path.
This detour path contains no chords between any two non-adjacent vertices of P . In 2011,
Santhakumaran and Titus [10] rebuilt this detour distance as monophonic distance in graphs.
For any two vertices u and v in a connected graph G, the monophonic distance dm(u, v) is
the length of a longest u − v monophonic path in G. Also they defined the monophonic ec-
centricity em(v) of a vertex v, the monophonic radius rm, the monophonic diameter dm, the
monophonic center Cm(G), and the monophonic periphery Pm(G). The monophonic distance
matrix m(G) = [dmij ] of G is a n×n matrix, where n is the order of G, and [dmij ] = dm(vi, vj),
the monophonic distance between vi and vj in G(1 ≤ i ≤ n, 1 ≤ j ≤ n). For the graph G

given in Fig.1.1, the monophonic distance matrix m(G) is

m(G) =



0 1 1 2 3 3
1 0 2 1 1 2
1 2 0 1 3 2
2 1 1 0 1 1
3 1 3 1 0 2
3 2 2 1 2 0


Ashok kumar, Athisayanathan and Antonysamy [1] introduced the algorithms to find vertex-

to-clique center in a graph using BC-representation. Correspondingly they defined a method
to represent a subset of a set which is called binary count (or BC) representation. That is,
BC(C(i))(1 ≤ i ≤ n) denotes the integer 1 or 0 in the ith place in the BC representation of
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the clique C in the graph G. For our convenience, we define if C = (010110) then |C| =
0 + 1 + 0 + 1 + 1 + 0 = 3.

Keerthi Asir and Athisayanathan [7, 9] introduced and studied the concepts of vertex-to-
clique detour distance and its algorithms in graphs. Also in [8], Keerthi Asir and Athisayanathan
introduced and studied the concepts of vertex-to-clique monophonic distance in graphs. In this
paper we introduce and study the algorithms to find the vertex-to-clique monophonic distance
dm(i, C), the vertex-to-clique monophonic eccentricity em1(i), the vertex-to-clique monophonic
radius Rm1 , the vertex-to-clique monophonic diameter Dm1 , the vertex-to-clique monophonic
center Cm1(G), and the vertex-to-clique monophonic periphery Pm1(G) of a graph G using BC
representation. Throughout this paper, G denotes a connected graph with at least two vertices.

2. VERTEX-TO-CLIQUE MONOPHONIC DISTANCE

First, we introduce an algorithm to find the vertex-to-clique monophonic distance dm(i, C)

between a vertex i and a clique C in a graph G using BC representation.

Definition 2.1. Let i be a vertex and C a clique in a connected graph G. A vertex-to-clique
i − C path P is an i − j path, where j is a vertex in C such that P contains no vertices of
C other than j and the i − C path P is said to be an i − C monophonic path if P contains
no chords in G. The vertex-to-clique monophonic distance dm(i, C) is the length of a longest
i− C monophonic path in G.

Algorithm 2.2. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C :

C is a clique in BC representation}.

(1) Let dm(G) = [dmij ] be the monophonic distance matrix of G.
(2) Let i ∈ V

(3) Let C ∈ ζ

(4) If BC(C(i)) = 1 then dm(i, C) = 0; goto step (10)
(5) For j = 1 to n

(6) If BC(C(j)) = 0 then dm(i, j) = 0

(7) If BC(C(j)) = 1 then dm(i, j) = dmij

(8) Next j
(9) Find dm(i, C)

• If |C| = 2 and G has more than one i − C monophonic path then dm(i, C) =

max{dm(i, j) : 1 ≤ j ≤ n}
• If |C| > 2 or G has unique i−C monophonic path then dm(i, C) = max{dm(i, j) :

1 ≤ j ≤ n} − 1

(10) Return dm(i, C)

(11) Stop

Theorem 2.3. For every vertex i and a clique C in a connected graph G, the Algorithm 2.2
finds the vertex-to-clique monophonic distance dm(i, C).
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Proof. Let G be a graph with V = {1, 2, 3, ..., n}, ζ = {C : C is a clique in BC representation}
and m(G) the monophonic distance matrix of G. Let i ∈ V and C ∈ ζ. We consider the fol-
lowing two cases:
Case 1. If i ∈ C then BC(C(i)) = 1 so that the vertex-to-clique monophonic distance
dm(i, C) = 0.
Case 2. If i /∈ C then BC(C(i)) = 0 so that the steps (5) to (8) of the Algorithm 2.2 finds the
monophonic distance dm(i, j) from the vertex i to the vertices j(1 ≤ j ≤ n) as follows.
Subcase 1 of Case 2. If j /∈ C then BC(C(j)) = 0(1 ≤ j ≤ n) so that the monophonic
distance dm(i, j) = 0.
Subcase 2 of Case 2. If j ∈ C then BC(C(j)) = 1(1 ≤ j ≤ n) so that the monophonic
distance dm(i, j) = dmij .
Then step (9) of the Algorithm 2.2 finds the vertex-to-clique monophonic distance dm(i, C) by
either dm(i, C) = max{dm(i, j) : 1 ≤ j ≤ n} or dm(i, C) = max{dm(i, j) : 1 ≤ j ≤
n} − 1.. �

In the Algorithm 2.2, the step (4) is executed in O(1) time, the steps (5) to (8) are executed
in O(n) time, and the step (9) is executed in O(n) time, we have the following theorem.

Theorem 2.4. The vertex-to-clique monophonic distance dm(i, C) between the vertex i and the
clique C in a graph G can be found in O(n) time.

Example 2.5. Consider the graph G given in Fig. 1.1, the set ζ of all cliques in G in BC
representation is ζ = {(110000), (101000), (010110), (001100), (000101)}. Let D(G) be the
monophonic distance matrix of G. Now using Algorithm 2.2, let us find the vertex-to-clique
monophonic distance dm(i, C) between the vertex i = 1 and the clique C = {1, 2}. Clearly
BC(C) = (110000). Since BC(C(i)) = 1, the Algorithm 2.2 returns vertex-to-clique mono-
phonic distance dm(i, C) = 0. Again using the Algorithm 2.2, let us find the vertex-to-clique
monophonic distance dm(i, C) between the vertex i = 1 and the clique C = {3, 4}. Clearly
BC(C) = (001100) and |C| = 2. Since BC(C(i)) = 0, the Algorithm 2.2 finds the vertex-
to-clique monophonic distance by dm(i, C) = max{dm(i, j) : 1 ≤ j ≤ n}. For the ver-
tices j = 1, 2, 5, 6, BC(C(j)) = 0 so that dm(i, j) = 0 and also for the vertices j = 3, 4,
BC(C(j)) = 1 so that dm(i, 3) = dmi3 = 1 and dm(i, 4) = dmi4 = 2. Now the Algorithm
2.2 returns the vertex-to-clique monophonic distance dm(i, C) = max{dm(i, j) : 1 ≤ j ≤
n} = max{dm(i, 1), dm(i, 2), dm(i, 3), dm(i, 4), dm(i, 5), dm(i, 6)} = max{0, 0, 1, 2, 0, 0} =

2. Further using the Algorithm 2.2, let us find the vertex-to-clique monophonic distance dm(i, C)

between the vertex i = 1 and the clique C = {2, 4, 5}. Clearly BC(C) = (010110) and
|C| > 2. Since BC(C(i)) = 0, the Algorithm 2.2 finds the vertex-to-clique monophonic
distance by dm(i, C) = max{dm(i, j) : 1 ≤ j ≤ n} − 1. For the vertices j = 1, 3, 6,
BC(C(j)) = 0 so that dm(i, j) = 0 and also for the vertices j = 2, 4, 5, BC(C(j)) = 1

so that dm(i, 2) = dmi2 = 1, dm(i, 4) = dmi4 = 2 and dm(i, 5) = dmi5 = 3. Now the
Algorithm 2.2 returns the vertex-to-clique monophonic distance dm(i, C) = max{dm(i, j) :

1 ≤ j ≤ n} − 1 = max{dm(i, 1), dm(i, 2), dm(i, 3), dm(i, 4), dm(i, 5), dm(i, 6)} − 1 =

max{0, 1, 0, 2, 3, 0} − 1 = 3− 1 = 2.
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3. VERTEX-TO-CLIQUE MONOPHONIC ECCENTRICITY

Next, we introduce an algorithm to find the vertex-to-clique monophonic eccentricity em1(i)

of a vertex i in a graph G using BC representation.

Definition 3.1. The vertex-to-clique monophonic eccentricity em1(i) of a vertex i in a connected
graph G is defined as em1(i) = max {dm(i, C) : C ∈ ζ}, where ζ is the set of all cliques in G.

Algorithm 3.2. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C :

C is a clique in BC representation}.

(1) Let ζ = {C1, C2, ..., Cm}.
(2) Let i ∈ V

(3) For j = 1 to m

(4) Find dm(i, Cj), (By Calling Algorithm 2.2)
(5) Next j
(6) Find em1(i) = max{dm(i, Cj) : 1 ≤ j ≤ m}
(7) Return em1(i)

(8) Stop

Theorem 3.3. For every vertex i and the set of all cliques ζ in a connected graph G, the
Algorithm 3.2 finds the vertex-to-clique monophonic eccentricity em1(i).

Proof. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C1, C2, . . . , Cm}
the set of all cliques in BC representation in G. Let i ∈ V . Then the step (4) of the Algorithm
3.2 finds the vertex-to-clique monophonic distance dm(i, Cj) between the vertex i and every
clique Cj(1 ≤ j ≤ m) in G, and the step (6) of the Algorithm 3.2 finds the vertex-to-clique
monophonic eccentricity em1(i) by em1(i) = max{dm(i, Cj) : 1 ≤ j ≤ m}. �

In the Algorithm 3.2, the step (4) is executed in O(n) time, the steps (3) to (5) are executed
in O(mn) time, and the step (6) is executed in O(m) time, we have the following theorem.

Theorem 3.4. The vertex-to-clique monophonic eccentricity em1(i) of a vertex i in a graph G

can be found in O(mn) time.

Example 3.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in BC representation
is ζ = {(110000), (101000), (010110), (001100), (000101)}. Let i = 1 ∈ V . Now using
Algorithm 3.2, we find the vertex-to-clique monophonic eccentricity em1(i). By calling the
algorithm 2.2 m times, the step (4) of Algorithm 3.2 finds the vertex-to-clique monophonic
distances dm(i, C1) = 0, dm(i, C2) = 0, dm(i, C3) = 2, dm(i, C4) = 2, and dm(i, C5) = 2.
Finally the step (6) of Algorithm 3.2 finds the vertex-to-clique monohonic eccentricity em1(i) =

max{0, 0, 2, 2, 2} = 2.

4. VERTEX-TO-CLIQUE MONOPHONIC RADIUS

Next, we introduce an algorithm to find the vertex-to-clique monophonic radius Rm1 of a
graph G using BC representation.
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Definition 4.1. The vertex-to-clique monophonic radius Rm1 of a connected graph G is defined
as, Rm1 = radm1(G) = min {em1(i) : i ∈ V }.

Algorithm 4.2. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C :

C is a clique in BC representation}.

(1) Let i ∈ V

(2) For i = 1 to n

(3) Find em1(i), (By Calling Algorithm 3.2)
(4) Next i
(5) Find Rm1 = min{em1(i) : 1 ≤ i ≤ n}
(6) Return Rm1

(7) Stop

Theorem 4.3. For a connected graph G, the Algorithm 4.2 finds the vertex-to-clique mono-
phonic radius Rm1 of G.

Proof. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and i ∈ V . Then the
steps (2) to (4) of the Algorithm 4.2 finds the vertex-to-clique monophonic eccentricity em1(i)

for every vertex i, and the step (5) of the Algorithm 4.2 finds the vertex-to-clique monophonic
radius Rm1 of G by Rm1 = min{em1(i) : 1 ≤ i ≤ n}. �

In the Algorithm 4.2, the step (3) is executed in O(mn) time, the steps (2) to (4) are executed
in O(mn2) time, and the step (5) is executed in O(n) time, we have the following theorem.

Theorem 4.4. The vertex-to-clique monophonic radius Rm1 of G can be found in O(mn2)

time.

Example 4.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in BC rep-
resentation is ζ = {(110000), (101000), (010110), (001100), (000101)}. Let i = 1 ∈ V .
Now using Algorithm 4.2, we find the vertex-to-clique monophonic radius Rm1 of G. By
calling the algorithm 3.2 n times, the step (3) of Algorithm 4.2 finds the vertex-to-clique mono-
phonic eccentricities em1(1) = 2, em1(2) = 2, em1(3) = 2, em1(4) = 2, em1(5) = 3 and
em1(6) = 3. Finally step (5) of Algorithm 4.2 finds the vertex-to-clique monophonic radius
Rm1 = min{2, 2, 2, 2, 3, 3} = 2.

5. VERTEX-TO-CLIQUE MONOPHONIC CENTER

Next, we introduce an algorithm to find the vertex-to-clique monophonic center Cm1(G) of
a graph G using BC representation.

Definition 5.1. Let G be a connected graph. A vertex i in G is called a vertex-to-clique mono-
phonic central vertex if em1(i) = Rm1 and the vertex-to-clique monophonic center Cm1(G) of
G is defined as, Cm1(G) = Cenm1(G) = ⟨{i ∈ V : em1(i) = Rm1}⟩.

Algorithm 5.2. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C :

C is a clique in BC representation}.

(1) Let ζ = {C1, C2, ..., Cm}.
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(2) Let Cm1(G) = ⟨ϕ⟩
(3) For i = 1 to n

(4) Find em1(i), (By Calling Algorithm 3.2)
(5) Next i
(6) Find Rm1 , (By Calling Algorithm 4.2)
(7) For i = 1 to n

(8) If em1(i) = Rm1 then Cm1(G) = Cm1(G) ∪ {i}
(9) Next i

(10) Stop

Theorem 5.3. For a connected graph G, the Algorithm 5.2 finds the vertex-to-clique mono-
phonic center Cm1 of G.

Proof. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C1, C2, . . . , Cm}
the set of all cliques in BC representation in G. Then the steps (3) to (5) of the Algorithm
5.2 finds the vertex-to-clique monophonic eccentricity em1(i) for every vertex i ∈ V (1 ≤
i ≤ n), the step (6) of the Algorithm 5.2 finds the vertex-to-clique monophonic radius Rm1

of G by Rm1 = min{em1(i) : 1 ≤ i ≤ n}, and the steps (7) to (9) of the Algorithm 5.2
finds the vertex-to-clique monophonic center Cm1(G) of G by Cm1(G) = Cenm1(G) =

⟨{i ∈ V : em1(i) = Rm1}⟩. �

In the Algorithm 5.2, the step (4) is executed in O(mn) time, the steps (3) to (5) are executed
in O(mn2) time, the step (6) is executed in O(n) time, and the steps (7) to (9) are executed in
O(n) time, we have the following theorem.

Theorem 5.4. The vertex-to-clique monophonic center Cm1(G) of G can be found in O(mn2)

time.

Example 5.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in BC repre-
sentation is ζ = {(110000), (101000), (010110), (001100), (000101)}. Let i = 1 ∈ V . Now
using Algorithm 5.2, we find the vertex-to-clique monophonic center Cm1(G). By calling the
algorithm 3.2 n times, the step (4) of Algorithm 5.2 finds the vertex-to-clique monophonic ec-
centricities em1(1) = 2, em1(2) = 2, eD1(3) = 2, em1(4) = 2, em1(5) = 3 and em1(6) = 3.
By calling the algorithm 4.2 n times, step (6) of Algorithm 5.2 finds the vertex-to-clique mono-
phonic radius Rm1 = min{2, 2, 2, 2, 3, 3} = 2. Finally step (8) of Algorithm 5.2 finds the
vertex-to-clique monophonic center Cm1(G) = ⟨{i ∈ V : em1(i) = Rm1}⟩ = ⟨{1, 2, 3, 4}⟩.

6. VERTEX-TO-CLIQUE MONOPHONIC DIAMETER

Next, we introduce an algorithm to find the vertex-to-clique monophonic diameter Dm1 of a
graph G using BC representation.

Definition 6.1. The vertex-to-clique monophonic diameter Dm1 of a connected graph G is
defined as, Dm1 = diamm1(G) = max {em1(i) : i ∈ V }.

Algorithm 6.2. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C :

C is a clique in BC representation}.
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(1) Let i ∈ V

(2) For i = 1 to n

(3) Find em1(i), (By Calling Algorithm 3.2)
(4) Next i
(5) Find Dm1 = max{em1(i) : 1 ≤ i ≤ n}
(6) Return Dm1

(7) Stop

Theorem 6.3. For a connected graph G, the Algorithm 6.2 finds the vertex-to-clique mono-
phonic diameter Dm1 of G.

Proof. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and i ∈ V . Then the
steps (2) to (4) of the Algorithm 6.2 finds the vertex-to-clique monophonic eccentricity em1(i)

for every vertex i, and the step (5) of the Algorithm 6.2 finds the vertex-to-clique monophonic
diameter Dm1 of G by Dm1 = max{em1(i) : 1 ≤ i ≤ n}. �

In the Algorithm 6.2, the step (3) is executed in O(mn) time, the steps (2) to (4) are executed
in O(mn2) time, and the step (5) is executed in O(n) time, we have the following theorem.

Theorem 6.4. The vertex-to-clique monophonic diameter Dm1 of G can be found in O(mn2)

time.

Example 6.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in BC representation
is ζ = {(110000), (101000), (010110), (001100), (000101)}. Let i = 1 ∈ V . Now using
Algorithm 6.2, we find the vertex-to-clique monophonic diameter Dm1 of G. By calling the
algorithm 3.2 n times, the step (3) of Algorithm 6.2 finds the vertex-to-clique monophonic
eccentricities em1(1) = 2, em1(2) = 2, em1(3) = 2, em1(4) = 2, em1(5) = 3 and em1(6) =

3. Finally step (5) of Algorithm 6.2 finds the vertex-to-clique monophonic diameter Dm1 =

max{2, 2, 2, 2, 3, 3} = 3.

7. VERTEX-TO-CLIQUE MONOPHONIC PERIPHERY

Next, we introduce an algorithm to find the vertex-to-clique monophonic periphery Pm1(G)

of a graph G using BC representation.

Definition 7.1. Let G be a connected graph. A vertex i in G is called a vertex-to-clique mono-
phonic peripheral vertex if em1(i) = Dm1 and the vertex-to-clique monophonic periphery
Pm1(G) of G is defined as, Pm1(G) = Perm1(G) = ⟨{i ∈ V : em1(i) = Dm1}⟩.

Algorithm 7.2. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C :

C is a clique in BC representation}.

(1) Let ζ = {C1, C2, ..., Cm}.
(2) Let Pm1(G) = ⟨ϕ⟩
(3) For i = 1 to n

(4) Find em1(i), (By Calling Algorithm 3.2)
(5) Next i
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(6) Find Dm1 , (By Calling Algorithm 6.2)
(7) For i = 1 to n

(8) If em1(i) = Dm1 then Pm1(G) = Pm1(G) ∪ {i}
(9) Next i

(10) Stop

Theorem 7.3. For a connected graph G, the Algorithm 7.2 finds the vertex-to-clique mono-
phonic periphery Pm1 of G.

Proof. Let G be a non-trivial connected graph with V = {1, 2, 3, ..., n} and ζ = {C1, C2, . . . , Cm}
the set of all cliques in BC representation in G. Then the steps (3) to (5) of the Algorithm 7.2
finds the vertex-to-clique monophonic eccentricity em1(i) for every vertex i ∈ V (1 ≤ i ≤ n),
the step (6) of the Algorithm 7.2 finds the vertex-to-clique monophonic diameter Dm1 of G
by Dm1 = max{em1(i) : 1 ≤ i ≤ n}, and the steps (7) to (9) of the Algorithm 7.2
finds the vertex-to-clique monophonic periphery Pm1(G) of G by Pm1(G) = Perm1(G) =

⟨{i ∈ V : em1(i) = Dm1}⟩. �

In the Algorithm 7.2, the step (4) is executed in O(mn) time, the steps (3) to (5) are executed
in O(mn2) time, the step (6) is executed in O(n) time, and the steps (7) to (9) are executed in
O(n) time, we have the following theorem.

Theorem 7.4. The vertex-to-clique monophonic periphery Pm1(G) of G can be found in O(mn2)

time.

Example 7.5. For the graph G given in Fig. 1.1, the set ζ of all cliques in G in BC representation
is ζ = {(110000), (101000), (010110), (001100), (000101)}. Let i = 1 ∈ V . Now using
Algorithm 7.2, we find the vertex-to-clique monophonic periphery Pm1(G). By calling the
algorithm 3.2 n times, the step (4) of Algorithm 7.2 finds the vertex-to-clique monophonic
eccentricities em1(1) = 2, em1(2) = 2, em1(3) = 2, em1(4) = 2, em1(5) = 3 and em1(6) =

3. By calling the algorithm 6.2 n times, step (6) of Algorithm 7.2 finds the vertex-to-clique
monophonic diameter Dm1 = max{2, 2, 2, 2, 3, 3} = 3. Finally step (8) of Algorithm 7.2 finds
the vertex-to-clique monophonic periphery Pm1(G) = ⟨{i ∈ V : em1(i) = Dm1}⟩ = ⟨{5, 6}⟩.

8. OPEN PROBLEM

Problem 8.1. Discuss the algorithm for the vertex-to-clique monophonic center of every con-
nected graph G lies in a single block of G.

Problem 8.2. Discuss the algorithm for the vertex-to-clique monophonic self-centered graph.

9. CONCLUSION

In a social network a clique represents a group of individuals having a common interest. Thus
the centrality with respect to cliques have interesting applications in social networks. For exam-
ple if one wants to design a security based communication network, the monophonic concepts
play a vital role. These concepts have interesting applications in channel assignment problems
in radio technologies and capture different aspects of certain molecular problems in theoretical
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chemistry. In the case of designing the channel for a communication network, although maxi-
mum number of vertices are covered by the network when considering monophonic paths, some
of the edges (chords) may be left out. This drawback is rectified in the case of monophonic dis-
tance so that considering vertex-to-clique monophonic distance is more advantageous to real
life application of communication networks.
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